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Abstract. We describe an experimentation environment that enables large-scale numerical 
simulations of neural microphysiology to be fed back onto living neurons in-vitro via dynamic 
wholecell patch clamping – in effect making living neurons and simulated neurons part of the 
same neural circuit. Owing to high computational demands, the experimental testbed will be 
dispersed over a local area network comprising several high performance computing 
resources. Parallel execution, including feedback between the simulation components, will be 
managed by the Tarragon, a programming model and run time library that supports 
asynchronous data driven execution. Tarragon’s execution model matches the underlying 
dynamics of Monte Carlo simulation of diffusive processes and it masks the long network 
latencies entailed in coupled dispersed simulations. We discuss Tarragon and show how its 
data driven execution model can be used to dynamically feed back the results of a neural 
circuit simulation onto living cells in order to better understand the underlying signaling 
pathways between and within living cells. 
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1. INTRODUCTION 
Neurons in the brain connect with each other to form exceedingly complex networks 
of neural circuits which carry and transform information from neuron to neuron and 
circuit to circuit. At the same time, each individual neuron in the network is a living 
cell that contains within it complex biochemical signaling pathways which govern 
the behavior the cell. Since the information carried by the neural circuits physically 
exists in the form of the spatio-temporal state of these signaling pathways, the 
behavior of the circuits depends not only on the macroscopic neural network 
topology but also on the way information transforms and is itself transformed by the 
microscopic signaling pathways. That is, the neural circuits between cells and the 
signaling pathways within cells are coupled, spanning many length and time scales, 
to form a  massive information processing system.  
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Given the range of these scales and accompanying phenomena, study of the brain 
involves many techniques and disciplines approaching the problem from the top 
down and from the bottom up. A major challenge is how to integrate the 
understanding gleaned from disparate experimental paradigms and levels of analysis 
into one coherent picture. One promising technique that attempts to bridge the gap 
between single neurons and small neural circuits involves the use of dynamic whole-
cell patch clamping of living neurons and numerical simulations of neural circuits.  
     The dynamic whole-cell patch clamp technique involves using thin slices of 
living brain tissue placed in a special environmental chamber and viewed through 
microscope. The brain tissue is sliced in such a way that damage to the local neural 
circuitry within the slice is kept to a minimum. This permits study of the behavior of 
single neurons within the context of the neural circuits of which the neurons are 
integral components. Under the microscope, stimulating and recording electrodes 
are placed in the tissue. The recording electrodes are connected to electronic 
equipment which allow measurement of the voltage and current in a single neuron 
without disturbing the neighboring neurons. Early versions of this equipment also 
made it possible to hold the voltage or current of the cell at a constant command 
value, that is, to “clamp” the voltage or current at a constant value. Modern versions 
of this equipment allow voltage or current clamping to a dynamically changing 
command value—this is called a dynamic clamp. If the dynamically changing 
command value is computed in real-time based on the recent behavior of the 
clamped cell it becomes possible to dissect subtleties of neural circuit dynamics that 
would remain inaccessible by other means. Now the question becomes: how realistic 
and complex a computational model can one use to generate the dynamic command 
value in real-time on available hardware? 

2. ASYNCHRONOUS SIMULATION 

2.1 Simulation methodology 
Our starting point is a general Monte Carlo simulator of cellular microphysiology, 
called MCell [2,45,42,44,43]. At the heart of the cell simulator is a 3D random walk 
that models diffusion using a Monte Carlo method. A highly scalable variant of 
MCell called MCell-K [8] has been implemented using the KeLP infrastructure 
[18,19], but a new variant is currently under investigation that employs 
asynchronous, data driven execution, and is described below.  The complexity in 
implementing the random walk on a scalable platform comes as the result of three 
factors: (1) the unpredictable nature of molecular motion due to random walks and 
encounters with cell membranes, (2) time-dependent molecular concentrations, and 
(3) the need to enforce causality.  
     As molecules follow their random walk through space they may occasionally 
change processor owners and hence incur communication. This communication is 
currently handled in bulk by the KeLP implementation: migrant molecules are 
collected until the end of the current timestep and moved en masse to their 
destination. Since molecules may reflect off of cell membranes, or be released after 
becoming bound, termination of each timestep must be detected to avoid non-causal 
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behavior. If a processor were to begin the next timestep, and a “straggler” molecule 
arrived that had not completed its random walk in the previous timestep, then the 
computation would be in error. This is a classic problem in parallel discrete event 
simulation [21]. MCell-K employs a conservative strategy [14,34] for ensuring 
correctness, synchronizing several times each timestep in order to detect 
termination.  
      The behavior of neural circuits spans a multitude of length and time scales. For 
the reasons explained above, we envision computational models that must include 
not just the macroscopic behavior of neural circuits—such as arises from simple 
integrate-and-fire neurons as modeled by NEURON [23]—but also the microscopic 
behavior of individual synapses and downstream signal transduction cascades (e.g. 
as modeled by MCell). NEURON is widely-used modeling environment for 
simulation of the electrophysiology of neurons and neural circuits. The MCell 
simulations of microscopic behavior will be integrated with neural circuit-level 
simulations handled by NEURON. In turn these will be fed into the dynamic patch 
clamp assembly. 

2.2  Requirements 
Our simulations introduce two requirements: they are computationally demanding 
and they entail processing of asynchronous events. To meet our resource 
requirements we will run simulations on a collection of high performance computing 
resources dispersed over a local area network. To support asynchronous event 
processing we will employ a data driven execution model which is currently under 
investigation. This model is called Tarragon and it will be implemented as a run 
time library.  
     Asynchronous data driven execution actually plays two roles. First, it manages 
physical processes that are inherently asynchronous, such as the random walk 
process of the Monte Carlo simulation algorithm, and the coupling of the numerical 
model output to the dynamic patch clamp. Second, asynchronous execution is 
invaluable in managing the complexity of writing latency tolerant algorithms. Many 
scientific users lack the background or the inclination to manage asynchronous 
execution and are already burdened with the issues surrounding parallelization. 
 

2.3 The Pitfalls of Masking Communication 
During the course of making their random walks molecules will inevitably bounce 
off cell membrane surfaces. Their precise trajectory cannot be known in advance, 
though the maximum distance a molecule can diffuse in a single timestep is 
bounded. The only way to be certain that all walks have completed is to have 
processors exchange local completion information. The computation associated with 
detecting termination takes time to settle; on average 6 to 8 synchronization points 
are required per timestep in MCell-K. 
     While the cost of such synchronization is not significant on scalable platforms it 
is expected to grow significantly when computations are dispersed over a network. 
In order to meet real time constraints it is important that communication be kept out 
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of the critical path. We can avoid the unnecessary synchronization steps by 
permitting ligands to migrate instantaneously, i.e. using single-sided 
communication. However, the resultant communication costs would be unacceptable 
since such communication is inherently fine grained–each ligand consumes roughly 
50 bytes. While techniques for realizing overlap can reduce communication costs 
e.g. via a communication proxy [5,33], significant and intrusive programmer 
intervention is required to reformulate the algorithm [6]. Many programmers lack 
the background to manage split-phase execution, computation re-ordering, and the 
bookkeeping needed to handle overlap effectively. A data driven execution model is 
inherently well matched to handling communication overlap since it can order tasks 
dynamically according to the availability of data, without requiring programmer 
intervention. 
 

3. RUN TIME SUPPORT ISSUES 
Two run time support issues arise in our application: load balancing and sceduling. 
A good load balancing strategy helps ensure that the work is assigned fairly over all 
the processors. This is important since any load imbalance will exacerbate 
communication wait times [18]. A good schedule helps ensure that the processors 
are making progress along the critical path which is essential in order to meet real 
time deadlines. 
 

3.1 Partitioning 
Due to uneven time-dependent concentrations of molecules, a load balancing 
problem arises. Molecules must periodically be shuffled among processing nodes 
without seriously disrupting locality. Domain specific load balancing utilities are 
generally used to evenly assign work to processors. Our current plant is use a space-
filling curve to subdivide the workload, which will help conserve locality [41].  
     Under this strategy, we “over-partition” computations into chunks such that each 
processing node obtains several pieces of work [46]. (If the processing node has 
multiple CPUs, then the processors may share the using processors self-scheduling.) 
Chunks migrate gradually along the space filling curve in response to changes in the 
workload distribution [17, 20, 27, 40,37].       
     There are three desirable aspects of this strategy: it (1) preserves locality, (2) 
facilitates communication overlap via software pipelining, and (3) relies on 
workload migration in lieu of data repartitioning, obviating the need for empirically 
derived models to estimate workloads [4]. There is an advantage to removing the 
need for empirical models.  They are data dependent and would continually change: 
MCell’s computational techniques are evolving in order to meet new simulator 
requirements.  
     Dynamic load balancing of task graphs has been employed in the SCIRun [25] 
and Uintah [36] programming environments. While SCIRun relies on shared 
memory, some progress has been made in a hierarchical load balancer for clustered 
SMP systems. Taylor and co-workers [31] manage load balancing of structured 
adaptive mesh refinement [11,10] on distributed systems. The systems consist of a 
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small number of machines—two Origin 2000 systems. The scheduler carries out 
local and global load balancing, and also takes into account network delays. 
Parashar and others have treated a similar problem in a structured setting [38,39]. 
SMARTS [47] supports integrated task and data parallelism for MIMD, and 
provides an API for coarse-grain macro-dataflow. It relies on work-stealing[35], and 
has been demonstrated only on shared memory. Related work has primarily treated 
functional parallelism, e.g. CILK[32], Mentat[22], and others [3]. OSCAR[28] has 
similar goals to SMARTS, but operates on static graphs.  
 

3.2 Scheduling 
In a latency tolerant formulation, each processor will communicate with others to 
exchange migrating molecules and to perform termination tests. The precise order in 
which a processor executes its assigned work and carries out communication can 
dramatically affect performance. Concerns surrounding locality, dynamically 
varying workloads, and communication performance are at issue. For example, it 
may be advantageous to preferentially schedule random walks involving nearby 
molecules in order to enhance memory locality in accesses to the data structures that 
represent surfaces the molecules react with. This in turn implies that a separate 
scheduling algorithm is needed to manage communication: molecules that are 
migrating to the same processor should be communicated nearby in time, so that the 
preferential scheduling algorithm will have the opportunity to schedule the events as 
intended. A good schedule can also enhance communication overlap so that there is 
sufficient available computational work to overlap with communication. Since 
scheduling policies may differ among applications (and even the initial data), it s 
important to separate scheduling and algorithm correctness concerns in order to 
improve application performance robustness. 
 

4. TARRAGON 
To meet our requirements, we are investigating a programming model with data 
driven [24] execution semantics. Under such a model, data motion triggers 
computation and vice versa. The execution model is fundamentally different from 
Bulk Synchronous parallelism, which divides communication and computation into 
distinct phases, and provides a cleaner way of handling ligands that cross  processor 
boundaries during the course of making their random walks. The flow of the data 
rather than the success of heroic programming determines the ability to overlap 
communication with computation and the scheduler can ensure that the processor 
makes timely progress along the critical path with respect to communication and real 
time deadlines. Owing to the use of overdecomposition, there will be plenty of 
random walk computations available to overlap with the communication and 
workloads can be migrated automatically to ensure that workloads can be evenly 
balanced.  
     We are implementing our experimental software testbed to support the data 
driven execution model along with new scheduling algorithms and load balancing 
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strategies. These will be implemented as a set of run time libraries called Tarragon. 
We are also investigating parameterized scheduling algorithms such that an 
application can communicate performance hints in the form of performance. These 
metadata have the capacity to articulate scheduling changes that can improve 
performance without affecting correctness. 

4.1 Theory of operation 
Tarragon supports task parallelism in which computations are described by a 
directed graph constructed at run time. The vertices correspond to tasks to be 
executed, the edges correspond to data dependences between the tasks. A task graph 
is distributed across processing modules, and each module is assumed to comprise 
multiple CPUs sharing a common address space.  Memory is not shared across 
modules. 
     The Tarragon Model operates with the assistance of an entity known as the 
Mover-Dispatcher. The Mover-dispatcher runs concurrently with the application and 
is hidden from the view of the casual programmer. As with traditional data flow 
[16,26,1], parallelism arises among independent tasks. Dependent tasks are enabled 
according to the flow of data among them. Task firing rules are non-strict in 
Tarragon. First, a task may fire as the result of the flow of data across an individual 
edge. Second, data may be treated as a stream and a task may fire upon arrival of a 
subset of a stream. The Mover-Dispatcher is in charge of moving data along the 
edges of a TaskGraph and handling task enablement 
     The Tarragon philosophy is to support data motion with operations that have an 
intuitive cost model rather than to hide the activity. It provides a simple data motion 
primitive: push( ). A call to push( ) may or may not cause information to be moved 
immediately. The Mover/Dispatcher decides when to actually carry out the required 
communication under the advice of the Scheduler. The specific mechanism that the 
Mover-Dispatcher uses to move data among tasks is hidden from the user. It may 
involve a call to MPI, TCP/IP, or a simple memory copy if the source and 
destination tasks occupy the same address space.  
     Incoming data is processed by the Mover/Dispatcher, which makes a callback to 
a user-defined handler to deserialize the incoming data into the user data structures 
associated with the receiving TaskGraph node. There is no need for programmer 
intervention to invoke the handler and the Tarragon run time system will incorporate 
incoming data without interference into data structures that are involved in running 
computations.  A task can become enabled when data has arrived on one or more 
input edges. The decision to make a task runnable is made by the scheduler on the 
Mover-Dispatcher's behalf. Scheduling will be discussed in detail below (§4.3).  
    There is one other issue that must be handled: termination. When a task runs out 
of molecules it may or may not have completed execution for the current timestep. 
The reason is that at some later time during the timestep a molecule may enter the 
region of space owned by the task. At this time, the task is made runnable. The task 
will eventually execute at a time determined by the Scheduler. Eventually the task 
will complete the current timestep and may proceed to the next one. Tasks 
communicate with other tasks when they exhaust their workload and this 
information is used to detect termination.  
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4.2 Coupling 
The Mover/Dispatcher effectively isolates an application from policy decisions 
concerning scheduling and data motion. Thus, the activities may be customized to 
the application and system configuration in order to meet real time requirements, 
and to tolerate the multiple scales of latency inherent to a hierarchically constructed 
computing platform.  
     The TaskGraph may be used not only to represent the MCell simulations, but 
also to represent the coupled program structure that feeds the result of the 
simulations to the in-vitro patch clamp assembly. Results from the simulations are 
fed into the assembly at the time they become available, avoiding the need for 
polling. The component subtasks may vary in their computational requirements but 
the Tarragon run time system will allocate an appropriate amount of resources to 
each simulation invocation under direction of the Scheduler, which is in turn 
invoked by the Mover-Dispatcher. 

4.3 Scheduling 
Scheduling plays an important role in optimizing performance as its goal is to enable 
progress along the critical path of outstanding communication and computation. A 
good scheduler must address competing concerns surrounding locality, 
communication latency and real time concerns, and it is important that all concerns 
be balanced.  Scheduling has received considerable attention in recent years. 
Beaumont et al. [9] advocate bandwidth centric scheduling of equal sized tasks on 
heterogeneous processors. Such scheduling may be useful in allocating tasks to the 
same processing node based on the carried workload and communication costs. 
Affinity hints have been employed by others to support locality (e.g. COOL [13]). 
SMARTS used affinity information to enhance memory locality by scheduling 
related tasks “back to back” at run time [47]. Kohn and Baden have used affinity in 
co-locating structured adaptive meshes in order to reduce communication costs [30]. 
Others have proposed application level schedulers [12].  
     In addition to performance, real time concerns are also at issue. For instance, it is 
important to ensure that information flowing between the living tissue and the 
simulations are processed in a timely manner. Flexible scheduling enables Tarragon 
to meet these requirements and its task graph representation readily accommodates 
both the MCell simulator as well as the clamping devices.  
     To support flexible scheduling we will apply a new technique called 
parameterized scheduling. Parameterized scheduling has the property that it can 
read attributes decorating the task graph to help guide the scheduler. These attributes 
come in the form of performance metadata [29], which can represent a variety of 
quantities, e.g. affinity, priority or other metrics. The Tarragon programmer is free 
to interpret the meaning of the metadata, while the scheduler examines their relative 
magnitudes in order to make scheduling decisions. The flexibility offered by 
parameterized scheduling significantly enhances the ability to explore alternative 
scheduling policies and metrics.  
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4.4 Implementation 
To support data driven execution, each processing module will run one or more 
Mover-Dispatcher threads to coordinate communication and scheduling. The 
Mover-Dispatcher listens for data motion activity and runs concurrently with 
computation.  It routes outgoing data to other tasks as specified in the TaskGraph 
and also senses the arrival of data coming from other tasks.  The arrival of incoming 
data causes the Mover-Dispatcher to enable a suspended task for execution. 
Although the Mover-Dispatcher consumes resources, past work with communication 
proxies revealed the cost to be reasonable so long as the proxy does not utilize the 
processor as much as the computational threads [5,18,6,7]. We expect this to be the 
case of the present application. 
     Some aspects of Tarragon are similar to those of the Charm++ run time 
system[40,27]. Like Charm, work is “overdecomposed” onto processing nodes, that 
is, tasks are assigned many-to-one to processing modules. However, there are some 
important differences. Charm++ supports shared objects, and asynchronous remote 
method invocation on general C++ objects. Tarragon exposes a different API to the 
programmer. There are no shared objects, and methods may be invoked only locally. 
Data must be moved explicitly and before a method may be applied to it. The 
Tarragon philosophy is to expose communication, which is assumed to be an 
expensive operation. DMCS [15] has some similarities to Tarragon. It supports 
single sided communication and active messages.  
 

5.  DISCUSSION AND CONCLUSIONS 
An experimentation environment has been described for coupling large-scale 
numerical simulations of neural microphysiology to living neurons in-vitro. The 
environment is coordinated asynchronously using a run time library called Tarragon. 
Tarragon supports data driven execution. It masks communication latency and 
balances workloads automatically. Tarragon makes two contributions: (1) 
parameterized scheduling, which includes performance meta data used to guide 
scheduling decisions, and (2) a uniform model for expressing asynchronous 
parallelism involving a mixture of physical devices on a “wet lab” work bench and 
hierarchically organized computational resources coupled over local area networks. 
Tarragon separates the concerns surrounding policy from decisions affecting 
performance, i.e. scheduling, from the expression of a correct algorithm. It therefore 
supports the implementation of highly scalable cell physiology simulators that offer 
performance and coding advantages compared with simulators implemented under 
bulk synchronous parallelism, thereby enabling new capabilities for making 
scientific discovery. 
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